Sahabatsering tertarik untuk menghapus jumlah dari dua atau lebih fungsi. Jika L adalah operator diferensial linier sehingga L(y₁) = 0 dan L(y₂) = 0, maka L akan menghilangkan kombinasi linier c₁y₁(x) + c₂y₂(x).Misalkan L₁ dan L₂ adalah operator diferensial linier dengan koefisien konstanta sehingga L₁ menghilangkan y₁(x) dan L₂ menghilangkan y₂(x), tetapi L₁y₂ ≠Discover the world's research25+ million members160+ million publication billion citationsJoin for free Persentase Statistika Pendidikan Matematika Ukuran VariasiDi presentasikan pada kuliah Statistika Pendidikan Matematika Program Pascasarjana Universitas Negeri Medan Prodi Pendidikan MatematikaOleh Rizki Kurniawan Rangkuti Ukuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil PkUkuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil Pk Ukuran VariasiUkuran pemusatan dapat digunakan untuk menampilkan ringkasan data dalam suatu nilai tunggal yang menunjukkan rata-rata distribusi. Sekumpulan data mempunyai unsur-unsur yang nilainya bervariasi dan dua distribusi data atau lebih mungkin memiliki nilai pusat yang sama tetapi variasinya berbeda. Ilustrasi berikut dapat menunjukkan kondisi tersebut Departemen Produksi PT STAR’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997 adalah 6 7 8 7 7Departemen Produksi PT FRESH’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997adalah 3 5 7 9 11Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Bila diperoleh nilai ukuran variasi yang kecil berarti tingkat keragaman data rendah, nilai-nilai observasi banyak terkonsentrasi disekitar nilai pusat. Sebaliknya bila nilai ukuran variasi yang diperoleh besar maka tingkat keragaman data besar, karena nilai-nilai observasi yang diperoleh saling berjauhan. Ukuran variasi dibedakan menjadi ukuran variasi absolut dan ukuran variasi ukuran variasi antara lain range, simpangan absolut rata-rata, variance dan standar deviasi, dan koefisien variasi, Ukuran variasi absolut digunakan untuk membandingkan suatu ukuran variasi dengan ukuran variasi lain dalam populasi yang sama.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang variasi relatif pada umumnya digunakan untuk membandingkan beberapa ukuran variasi dari beberapa populasi dengan unit pengukuran yang berbeda.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang berbeda. A. Range Rentang atau JangkauanRange adalah selisih antara nilai maksimum dengan nilai minimum dalam suatu gugus data. Sesuai dengan rumusnya, range dicari dengan melibatkan dua nilai saja, yaitu nilai terbesar dan nilai terkecil. Sebagai contoh diketahui nilai minimumnya $ dan maksimumnya $ Maka rentang range adalah $ - $ = $ B. Simpangan Absolut Rata-Rata Mean Absolut Deviation = MADSimpangan absolut rata-rata adalah jumlah mutlak penyimpangan setiap nilai pengamatan nilai rata-rata, dibagi banyaknya pengamatan. Simpangan absolut rata-rata mencerminkan rata-rata selisih mutlak nilai data terhadap nilai rata-rata. Untuk data yang tidak berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasiNXXMADNii1iXXN Untuk data yang berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasi = Frekuensi kelas ke-i i=1,2,3,...,kiXXNNXXfMADNiii1if C. Ragam Variance dan Standar DeviationRagam variance adalah jumlah kuadrat dari selisih nilai observasi dengan rata-rata hitung dibagi banyaknya observasi. Sedangkan standar deviasi adalah akar dari ragam tersebut. Ragam populasi yang tidak berkelompok dapat dihitung dengan formula NNXXNXNiNiiiNii1212122 Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi. Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi. 111212122nnXXnXXSniniiinii Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan NNXfXfNiNiiiii12122..1..12122nnXfXfSniniiiii D. Koefisien Variasi Koefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. D. Koefisien VariasiKoefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. Koefisien variasi diperoleh dengan rumus untuk populasi untuk sampel%100.KV% E. Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai ekstrem. Rumus kuartil untuk data berkelompok adalah Dimana Qk = Kuartil ke kB1 = Batas bawah nyata kelas yang mengandung Qk cfb = Frekuensi komulatif di bawah kelas yang berisi QkfQ = Frekuensi kelas yang mengandung Qki = Interval Kelask = 1, 2, 3N = Banyaknya F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah Dimana Pk = Persentil ke kB1 = Batas bawah nyata kelas yang mengandung persentil ke-kcfb = Frekuensi komulatif di bawah kelas yang berisi Pk i = Interval Kelasfp = Frekuensi kelas yang mengandung Pkk = 1, 2, 3,...,99N = Banyaknya observasi Terima Kasih Atas Perhatiannya ResearchGate has not been able to resolve any citations for this has not been able to resolve any references for this publication.
Koefisienvariasi dari data 6, 10, 6, 10 adalah - 14931553 mutiarahildza555 mutiarahildza555 20.03.2018 Matematika Jika jumlah uang tabungan yang diterima Ronni sebesar Rp 5.975.000,00 maka lama waktu Ronni telah menabung adalah . * 5,8 tahun 6,0 tahun 6,5 tahun 7,8 tahun
Pertanyaan baru di Matematika Perbandingan panjang, lebar dan tinggi sebuah balok adalah 5 3 2. Jika tinggi balok 8 cm, panjang dan lebar balok berturut-turut adalah ..kalo bisa … jawab aku kasih 50 poin✌️✌️ 1. Nilai dari operasi hitung 100÷5×6 adalah... Sebuah prisma alasnya berbentuk belah ketupat dengan luas permukaannya adalah 656cm³. Jika panjang diagonal-diagonal alasnya masing-masing 24 cm dan 1 … 0 cm. Maka tinggi prisma tersebut adalah... cm. Andre mempunyai persediaan satu kantong plastik pakan ikan. Pakan tersebut cukup untuk memberi makan ikannya yang berjumlah 18 ekor selama 15 hari. Ji … ka ikan Andre sekarang berjumlah 30 ekor, satu kantong plastik pakan ikan tersebut akan habis dalam waktu ... hari. a. 6 b. 7 *** C. d. 8 9 nakon skala Satu lusin pensil dibeli dengan harga Rp. 15000,00. Jika kemudian pensil dijual dengan harga satuan Rp. 2000,00, maka besar untung yang diperoleh selu … ruhnya adalah.... a. Rp. 9000,00 b. Rp. c. Rp. d. Rp. len pens adalahKoefisienvariasi adalah perbandingan antara simpangan baku dengan rata-rata suatu data dan dinyatakan dalam %. Koefisien variasi dirumuskan sebagai berikut . Keterangan . Dari data di atas lampu manakah yang lebih baik. tugas kuliah statistika : tugas statistika bab 3,4,5,6. Apr 18, 2014 · contoh ada sebuah data tunggal sebagai berikut 2 MatematikaSTATISTIKA Kelas 12 SMAStatistika WajibRagamRagamStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0148Diketahui data 2,6,7,1,4. Varians data tersebut adalah .... 0314Hasil ulangan matematika sekelompok siswa disajikan pada ...0148Ragam dari data 30, 40, 60, 70, 50 adalah ...0243Tentukan simpangan rata-rata dan simpangan baku data beri...Teks videoDisini kita memiliki soal yang berkaitan dengan statistika yang ditanyakan adalah koefisien variasi dan rumusnya ini adalah koefisien variasinya dinotasikan sebagai kafe ini akan sama dengan f x per X bar mah esnya itu adalah simpangan baku dan X bar nya adalah rata-rata dari data nya kemudian ini akan dikalikan dengan 100% kemudian disini tentunya kita membutuhkan informasi simpangan baku dan juga rata-ratanya. Nah pertama-tama disini kita akan mencari rata-rata nya atau dinotasikan sebagai f x bar ini akan sama dengan jumlah semua datanya Ini dibagi dengan ada berapa banyak datanya di sini Jumlah semua datanya berarti kita tinggal jumlahkan saja semuanya berarti 6 + 7 + 8 + 6 + 9 + 8 + 9 + 9 + 10 kemudian dibagi dengan ada berapa banyak data nah di situ ada 9 data berarti dibagi 9Jika dihitung ini akan menjadi 72 per 9 berarti rata-ratanya itu adalah 8 untuk mencari es yaitu simpangan baku ini rumusnya itu adalah akar dari Sigma I = 1 sampai n x min x bar kuadrat per m Nah itu adalah Jumlah Berapa banyak datanya Nah di sini kan tadi sudah kita hitung bawa nggak tanya itu ada 9 berarti airnya itu adalah 9 Kemudian untuk aksinya itu berarti X1 X2 dan seterusnya. Nah ini kita lihat dari datanya berarti 6 ini x 17 x 28 x 3 dan seterusnya dengan demikian di sini kita akan mendapatkan rumus atau persamaan simpangan baku yaitu adalah di sini 6 - 8 karena kan x 1 dikurangi dengan rata-ratanya yaitu 8 ini di kuadrat Kemudian ditambahkan dengan 7 milikuadrat ditambah 8 Min 8 kuadrat + 68 kuadrat + 9 Min 8 kuadrat + 8 Min 8 kuadrat ditambah 9 Min 8 kuadrat ditambah 9 Min 8 kuadrat + 10 Min 8 kuadrat lalu ini semua akan dibagi dengan n ingat ini adalah 9 dan ini di akar jika kita jumlahkan di sini kita akan mendapatkan akar dari total yang atas itu adalah 16 per 9 Nah ini jika diakarkan berarti jadi akar 16 per Akar 9 hasilnya adalah 4 per 3 dengan demikian disini kita bisa mendapatkan koefisien variasinya atau Cafe ini = X per X bar s-nya itu adalah 4 per 3 per X bar nyata rata-ratanya itu adalah 8Ini jika kita hitung hasilnya adalah 1/6 atau misalnya jika kita ingin hasilnya itu dalam persen berarti cafenya atau koefisien variasinya itu adalah 1 per 6 dikali 100% Ini hasilnya itu adalah 53% dengan demikian jawabannya itu tidak ada di pilihannya sampai jumpa di pertanyaan berikutnya.
deviasi dan koefisien variasi untuk mendeskripsikan karakteristik data dengan rumus sebagai berikut: n i 1 1 x n ¦ (2 1 i) i=1 n x = n x s ¦ KV.100% s = x Keterangan: x = rata-rata n = banyak data x i = data pengamatan ke-i s Metode = standar deviasi KV= koefisien variasi C. Data Panel Data panel merupakan kumpulan data di mana perilaku
JadiMekelberat badan mahasiswa adalah . 67. MEDIAN (Mdkel) LMd = n/2. Letak Md. data berkelompok. Kemungkinan ukuran variasi dari dua rangkaian data dengan nilai mean yang sama atau berbeda adalah pertama, nilai mean sama ukuran variasi berbeda, nilai mean tidak sama ukuran variasi berbeda, nilai mean tidak sama ukuran variasi sama, dan
5,787 ViewsSinopsisContents1 Sinopsis2 Jumlah Keseluruhan / SUM3 Rata-Rata Aritmatik atau Rata-Rata Hitung4 Modus5 Median6 Range7 Variance8 Standar Deviasi9 Koefisien Variasi10 Data yang dibakukan data standarisasi11 Ukuran Kemiringan Distribusi Data skewness12 Ukuran Keruncingan kurtosis13 Package psych14 Package Pastecs Sebagai pembahasan dasar-dasar statistika, kalian akan belajar yang dimulai dari mengukur gejala pusat seperti sum, mean, median, variance, standar deviasi dan yang lainnya. Hal ini berguna sebagai deskripsi awal mengenai datasetnya sehingga mampu menggunakan tools analisis yang lainnya. Pembahasan ini secara garis besar dibagi menjadi 2 yaitu Diberikan pengertian dan rumus matematika setiap operasi statistik dasar dengan R Serta membuat function dalam kode R. Menggunakan package untuk melakukan operasi statistika. Oiya jangan lupa kalian belajar plot grafik dan cara install package di R Sebagian besar dataset yang digunakan menggunakan format CSV yang diload kedalam Data Frame ataupun dalam bentuk vector untuk mempermudah dalam pengolahan selanjutnya. Sebagai contoh terdapat dataset berikut. Berdasarkan tabel diatas akan dihitung sum, mean, modus, dan medianya yang disajikan dalam bentuk variabel vector di R nilai_siswa rangenilai$A [1] 6 9 > rangenilai$B [1] 5 9 > rangenilai$C [1] 4 10 Variance Variance berhubungan erat dengan standard deviation, yaitu digunakan untuk mengukur dan mengetahui seberapa jauh bagaimana penyebaran data dalam distribusi data. Dengan kata lain digunakan untuk mengukur variabilitas data Dalam bahasa awam variance adalah untuk mengetahui tingkat keragaman dalam data. Semakin tinggi nilai variance berarti semakin bervariasi dan beragam suatu data. Untuk menghitung variance, harus diketahui terlebih dahulu mean-nya, kemudian menjumlahkan kuadrat selisih dari tiap-tiap data terhadap mean tersebut. Secara numeric, variance merupakan rata-rata dari kuadrat selisih data terhadap mean. Variance dalam hal ini variance untuk sampel dilambangkan dengan . Berikut rumus untuk menghitung nilai variance. Perintah yang digunakan yaitu varnilai_siswa hasil Standar Deviasi Standard deviation diperoleh dari akar dari variance dan digunakan untuk mengukur penyebaran data. Standar deviasi merupakan akar kuadrat positif variance. Nilai dari standar deviasi dapat diinterpretasi sebagai nilai yang menunjukkan seberapa dekat nilai-nilai data menyebar atau berkumpul di sekitar rata-ratanya. Standar deviasi merupakan salah satu dari ukuran pencaran yang paling sering digunakan. Perintah yang digunakan yaitu sdnilai_siswa hasil Koefisien Variasi Kalian bisa lihat dataset berikut yang mempunyai range nilai yang berbeda, untuk kelas A mempunyai range nilai 0 sd. 10; untuk kelas B mempunyai range nilai 0 100; sedangkan untuk kelas C mempunyai range nilai 0 1. Misalkan untuk menggambarkan heterogen mana antara kelas A, B, dan C Untuk itu dapat digunakan koefisien variasi untuk membandingkan tingkat variasi atau heterogen di antara dua atau lebih kelompok ketika suatu satuan/range nya berbeda-beda dengan rumus Kode kv kvnilai$A [1] > kvnilai$B [1] > kvnilai$C [1] Semakin tinggi nilai koefisen variasi maka makin heterogen. Data yang dibakukan data standarisasi Variabel yang mengukur deviasi dari rerata dalam unit disebut dengan variabel yang dibakukan. Rumus umumnya yaitu Perhatikan nilai Z baku diatas harus mempunyai nilai rerata 1 dan standar deviasi 0. Berdasarkan uraian tersebut, data dalam bentuk standar atau baku sangat berguna untuk tujuan perbandingan distribusi dari beberapa kelompok data. Untuk kode dalam R kalian bisa menggunakan sebuah library saja atau menggunakan function berikut zdata 0 atau positif, maka kurva cenderung condong ke kanan kurva positif. Jika nilai kemiringan mendekati 0 atau 0, maka kurva cenderung simetris. Oiya untuk perhitungan skewness harus menggunakan frekuensi ya! Misalkan kita punya data berikut dalam bentuk data frame dari sebuah file data No A 1 1 1 2 2 1 3 3 2 4 4 2 5 5 2 6 6 2 7 7 2 8 8 2 9 9 2 10 10 3 11 11 3 12 12 3 13 13 3 14 14 3 15 15 4 16 16 4 17 17 4 18 18 4 19 19 5 20 20 5 21 21 5 22 22 6 23 23 6 24 24 7 Kode yang digunakan untuk menampilkan dan menghitung skew skew nilai No A B C 1 1 1 1 1 2 2 1 1 1 3 3 1 1 2 4 4 1 2 2 5 5 2 2 2 6 6 2 2 2 7 7 2 2 2 8 8 2 2 2 9 9 3 2 2 10 10 3 3 2 11 11 3 3 3 12 12 3 3 3 Mempunyai grafik distribusi dan nilai kurtosis sebagai berikut freq nilai No A B C 1 1 1 1 1 2 2 1 1 1 3 3 1 1 2 4 4 1 2 2 5 5 2 2 2 6 6 2 2 2 7 7 2 2 2 8 8 2 2 2 9 9 3 2 2 10 10 3 3 2 11 11 3 3 3 12 12 3 3 3 dengan memanggil perintah describe akan didapatkan informasi yang lengkap mengenai data tersebut describenilai hasil vars n mean sd median trimmed mad min max range skew kurtosis se No 1 12 1 12 11 0 A 2 12 1 3 2 0 B 3 12 1 3 2 0 C 4 12 1 3 2 0 Fungsi describe dalam hal ini digunakan untuk menentukan banyaknya data n, rata-rata aritmatik mean, standar deviasi sd, median, minimum min, maksimum max, range, kemiringan skew, dan kurtosis. Tapi ada yang kurang sih yaitu nilai variance, sum, dan standard error mean belum dan koefisien korelasi maka kalian perlu install package pastecs Package Pastecs Seperti biasa lakukan dulu install package dengan perintah berikut lakukan loading package dengan perintah librarypastecs Perintah yang digunakan yaitu hasilnya No A B C min max range sum median mean var .